PYROLYSIS OF ALANG – ALANG (IMPERATA CILINDRICA) AS BIOENERGY SOURCE IN BANTEN PROVINCE INDONESIA

  • Fitriyah Fitriyah universitas banten jaya
  • Syarif Hidayat 1Faculty of Integrated Technologies, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam 2Environmental Engineering Universitas Banten Jaya, Ciwaru raya No. 73, Serang – Banten Indonesia, 42117
  • Muhammad S. Abu Bakar 1Faculty of Integrated Technologies, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
  • Neeranuch Phusunti Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
Keywords: : Alang - alang, Pyrolysis, GC/MS, Thermogravimetric analysis, Bioenergy

Abstract

Bahan bakar fosil sumber energi memiliki keterbatasan dan tidak terbarukan, penggunaan bahan bakar fosil secara terus menerus mengakibatkan krisis energy dan lingkungan. Rumput liar pada saat ini memiliki potensi untuk dikembangkan sebagai generasi kedua biomasa. Hal ini memiliki keuntungan seperti tumbuh dengan cepat, mudah tumbuh, perawatan yang minimal, dapat tumbuh pada lahan kritis dan tersedia dalam jumlah yang banyak. Dalam upaya mengembangkan generasi kedua biomasa, penelitian ini secara sistematis memberikan perspektif ekologi dan teknologi proses dalam mengembangkan bioenergi dari alang – alang di Provinsi Banten. Pada penelitian ini karakterisasi alang – alang dilakukan untuk menentukan sifat – sifat dan potensi bioenergy. Sedangkan fixed bed pirolisis dilakukan untuk mengidentifikasi potensi produksi bio-oil dari proses pirolisis. Sementara analisis karakterisasi bio-oil dilakukan untuk melihat potensi chemical building block sebagai sumber energi. Analisis sifat kimia dan fisika alang – alang dilakukan melalui thermogravimetric analysis, proximate analysis, elemental analysis, compositional analysis, calorific value. Sedangkan analisis potensi bio-oil di lakukan melalui Gas ChromatographyMass Spectrometry (GC-MS). Dari hasil karakterisasi mengindikasikan bahwa alang – alang memiliki nilai kalori 18,05 MJ/kg, dengan ash konten yang rendah, dan tinggi kandungan volatile. Analisis dengan GC/MS menunjukan komponen utama dalam bio-oil dikelompokan ke dalam furan, ketone, phenol dan anhydrosugar yang merupakan platform yang dapat dikonversi menjadi sumber energi. Fixed bed pyrolysis atau fixed bed pirolisis alang – alang menunjukan, bahwa yield bio-oil meningkat sebagaimana peningkatan temperatur dan puncaknya pada suhu 500 0C dengan persentase 37,91%.

Kata Kunci: Alang - alang, Pirolisis, GC/MS, Thermogravimetric analysis, Bioenergi

 

ABSTRACT

Fossil fuel as a source of energy have limitation and are non-renewable. Continuous utilisation of fossil fuels as energy source can lead to energy crisis and environmental impact. Perennials grasses (alang – alang) are currently being developed as a suitable second-generation biofuel feedstock. It has advantages such as rapid growth rate, easy to grow, minimal maintenance and utilise marginal land without competing with food supply. Taking into account of the various challenges attributed to the transformation of second-generation biomass for energy production, this work systematically looks at the ecological perspective and the availability for bioenergy production from alang – alang in Banten Province. Biomass characterisation is carried out to determine the properties and bioenergy potential. Fixed bed pyrolysis study was conducted to predict the potential production of bio-oil from the pyrolysis process. GC/MS study is conducted to identify the potential building blocks of value-added chemicals from alang – alang. The physicochemical properties of feedstock was thoroughly evaluated using thermogravimetric analysis, proximate analysis, elemental analysis, compositional analysis, calorific value. The analysis of the potential of bio-oil was carried out through GC / MS. Characterisation results indicate that alang - alang has a calorific value of 18.39 MJ/kg, with low ash content and high percentage of volatile matter. Analysis from Gas Chromatography–Mass Spectrometry (GC-MS) showed that majority of the chemical groups in the bio-oil contained furan, ketone, phenol and anhydro-sugars. Phenolic and furanic were found as major compounds in bio oil. Phenolic, furanic, ketonic and anhydrosugars are promising renewable platform compounds derived from pyrolysis of alang – alang. The compounds can be further converted to chemicals or fuels. The fixed-bed pyrolysis of alang - alang showed that the yield of bio-oil increases as the temperature increases and peaks at 500°C with 38.79%.

Keywords: Alang - alang, Pyrolysis, GC/MS, Thermogravimetric analysis, Bioenergy

References

A.O.Ayeni, & W.B.Duke. (1985). The influence of rhizome features on subsequent regenerative capacity in speargrass (Imperata cylindrica (L.) Beauv.). Agriculture, Ecosystems & Environment, 13(3–4), 309–317. http://doi.org/10.1016/0167-8809(85)90018-0

Abu Bakar, M. S., & Titiloye, J. O. (2013). Catalytic pyrolysis of rice husk for bio-oil production. Journal of Analytical and Applied Pyrolysis, 103, 362–368. http://doi.org/10.1016/j.jaap.2012.09.005

Azduwin, K., Ridzuan, J. M., Hafiz, S. M., & Amran, T. (2012). Slow pyrolysis of Imperata cylindrica in a fixed bed reactor. International Journal of Biological, Ecological, and Environment Science, 176–180.

Azeez, A. M., Meier, D., Odermatt, J., & Willner, T. (2010). Fast Pyrolysis of African and European Lignocellulosic Biomasaes Using Py-GC/MS and Fluidized Bed Reactor. Energy & Fuels, 24(3), 2078–2085. http://doi.org/10.1021/ef9012856

Banks, S. W., Nowakowski, D. J., & Bridgwater, A. V. (2014). Fast pyrolysis processing of surfactant washed Miscanthus. Fuel Processing Technology, 128, 94–103. http://doi.org/10.1016/j.fuproc.2014.07.005

Barta-Rajnai, E., Jakab, E., Sebestyén, Z., May, Z., Barta, Z., Wang, L., … Czégény, Z. (2016). Comprehensive Compositional Study of Torrefied Wood and Herbaceous Materials by Chemical Analysis and Thermoanalytical Methods. Energy & Fuels, 30(10), 8019–8030. http://doi.org/10.1021/acs.energyfuels.6b01030

Brook, R. M. (1989). Review of literature on Imperata cylindrica (L.) Raeuschel with particular reference to South East Asia. Tropical Pest Management, 35(1), 12–25. http://doi.org/10.1080/09670878909371312

Cao, L., Yuan, X., Jiang, L., Li, C., Xiao, Z., Huang, Z., … Li, H. (2016). Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomasa blends. Fuel, 175, 129–136. http://doi.org/10.1016/j.fuel.2016.01.089

Chikoye, D., Manyong, V. M., & Ekeleme, F. (2000). Characteristics of speargrass (Imperata cylindrica) dominated fields in West Africa: crops, soil properties, farmer perceptions and management strategies. Crop Protection, 19(7), 481–487. http://doi.org/10.1016/S0261-2194(00)00044-2

Collard, F.-X., & Blin, J. (2014). A review on pyrolysis of biomasa constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594–608.

De Conto, D., Silvestre, W. P., Baldasso, C., & Godinho, M. (2016). Performance of rotary kiln reactor for the elephant grass pyrolysis. Bioresource Technology, 218, 153–160. http://doi.org/10.1016/j.biortech.2016.06.082

Duan, L., Sun, H., Jiang, Y., Anthony, E. J., & Zhao, C. (2016). Partitioning of trace elements, As, Ba, Cd, Cr, Cu, Mn and Pb, in a 2.5MWth pilot-scale circulating fluidised bed combustor burning an anthracite and a bituminous coal. Fuel Processing Technology, 146, 1–8. http://doi.org/10.1016/j.fuproc.2016.02.003

Ehleringer, J. R., & Cerling, T. E. (2002). C3 and C4 photosynthesis. Encyclopedia of Global Environmental Change, 2, 186–190.

Galletti, G. C., & Bocchini, P. (1995). Pyrolysis/gas chromatography/mass spectrometry of lignocellulose. Rapid Communications in Mass Spectrometry, 9(9), 815–826. http://doi.org/10.1002/rcm.1290090920

Garrity, D. P., Soekardi, M., van Noordwijk, M., de la Cruz, R., Pathak, P. S., Gunasena, H. P. M., … Majid, N. M. (1996). The Imperata grasslands of tropical Asia: area, distribution, and typology. Agroforestry Systems, 36(1–3), 3–29. http://doi.org/10.1007/BF00142865

Greenhalf, C. E., Nowakowski, D. J., Bridgwater, A. V., Titiloye, J., Yates, N., Riche, A., & Shield, I. (2012). Thermochemical characterisation of straws and high yielding perennial grasses. Industrial Crops and Products, 36(1), 449–459. http://doi.org/10.1016/j.indcrop.2011.10.025

Greenhalf, C. E., Nowakowski, D. J., Harms, A. B., Titiloye, J. O., & Bridgwater, A. V. (2013). A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. Fuel, 108, 216–230. http://doi.org/10.1016/j.fuel.2013.01.075

Huang, C., Han, L., Yang, Z., & Liu, X. (2009). Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Management, 29(6), 1793–1797. http://doi.org/10.1016/j.wasman.2008.11.027

Imam, T., & Capareda, S. (2012). Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. Journal of Analytical and Applied Pyrolysis, 93, 170–177. http://doi.org/10.1016/j.jaap.2011.11.010

Johnson, J. M.-F., Barbour, N. W., & Weyers, S. L. (2007). Chemical composition of crop biomasa impacts its decomposition. Soil Science Society of America Journal, 71(1), 155–162.

Kamaroddin, M. F. A., Nyakuma, B. B., Oladokun, O. A., Abdullah, T. A. T., & Amin, N. A. S. (n.d.). Characterization of the fuel properties of Imperata cylindrica grass for thermal applications.

Kim, J. Y., Oh, S., Hwang, H., Moon, Y. H., & Choi, J. W. (2014). Assessment of miscanthus biomasa (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis. Energy, 76, 284–291. http://doi.org/10.1016/j.energy.2014.08.010

Lee, M. K., Tsai, W. T., Tsai, Y. L., & Lin, S. H. (2010). Pyrolysis of napier grass in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 88(2), 110–116. http://doi.org/10.1016/j.jaap.2010.03.003
Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomasa and Bioenergy, 25(4), 335–361. http://doi.org/10.1016/S0961-9534(03)00030-8

Li, L. L., Fu, X. B., Wang, X. N., Tian, Y. Y., & Qin, S. (2016). Pyrolytic characteristics and kinetic studies of agricultural wastes—Four kinds of grasses. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(8), 1156–1162.

Lin, H., Li, K., Zhang, X., & Wang, H. (2016). Structure Characterization and Model Construction of Indonesian Brown Coal. Energy & Fuels, 30(5), 3809–3814. http://doi.org/10.1021/acs.energyfuels.5b02696

Lyubchik, S. ., Benoit, R., & Béguin, F. (2002). Influence of chemical modification of anthracite on the porosity of the resulting activated carbons. Carbon, 40(8), 1287–1294. http://doi.org/10.1016/S0008-6223(01)00288-3

Mabrouki, J., Guedri, K., Abbassi, M. A., & Omri, A. (2016). Simulation of the fast pyrolysis of Tunisian biomasa feedstocks for bio-fuel production. Comptes Rendus Chimie, 19(4), 466–474. http://doi.org/10.1016/j.crci.2015.09.020

MacDonald, G. E. (2004). Cogongrass (Imperata cylindrica)—Biology, Ecology, and Management. Critical Reviews in Plant Sciences, 23(5), 367–380. http://doi.org/10.1080/07352680490505114

Mazlan, M. A. F., Uemura, Y., Osman, N. B., & Yusup, S. (2015). Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer. Energy Conversion and Management, 98, 208–214. http://doi.org/10.1016/j.enconman.2015.03.102

McKendry, P. (2002a). Energy production from biomasa (part 1): overview of biomasa. Bioresource Technology, 83(1), 37–46. http://doi.org/10.1016/S0960-8524(01)00118-3

McKendry, P. (2002b). Energy production from biomasa (part 2): conversion technologies. Bioresource Technology, 83(1), 47–54. http://doi.org/10.1016/S0960-8524(01)00119-5

McLaughlin, S. B., Samson, R., Bransby, D., & Wiselogel, A. (1996). Evaluating physical, chemical, and energetic properties of perennial grasses as biofuels. In Proc. Bioenergy (Vol. 96, pp. 1–8).

Mohammed, I. Y., Abakr, Y. A., Kazi, F. K., Yusup, S., Alshareef, I., & Chin, S. A. (2015). Comprehensive Characterization of Napier Grass as a Feedstock for Thermochemical Conversion. Energies, 8(5), 3403–3417. http://doi.org/10.3390/en8053403

Muthuraman, M., Namioka, T., & Yoshikawa, K. (2010). A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis. Fuel Processing Technology, 91(5), 550–558. http://doi.org/10.1016/j.fuproc.2009.12.018

Oladokun, O., Ahmad, A., Abdullah, T. A. T., Nyakuma, B. B., Bello, A. A.-H., & Al-Shatri, A. H. (2016). Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica. Applied Thermal Engineering, 105, 931–940. http://doi.org/10.1016/j.applthermaleng.2016.04.165

Ozyuguran, A., Akturk, A., & Yaman, S. (2018). Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomasa. Fuel, 214, 640–646. http://doi.org/10.1016/J.FUEL.2017.10.082

Park, H. J., Park, K. H., Jeon, J. K., Kim, J., Ryoo, R., Jeong, K. E., … Park, Y. K. (2012). Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel, 97, 379–384. http://doi.org/10.1016/j.fuel.2012.01.075

Patel, M., Zhang, X., & Kumar, A. (2016). Techno-economic and life cycle assessment on lignocellulosic biomasa thermochemical conversion technologies: A review. Renewable and Sustainable Energy Reviews, 53, 1486–1499. http://doi.org/10.1016/j.rser.2015.09.070

Pattiya, A., Titiloye, J. O., & Bridgwater, A. V. (2008). Fast pyrolysis of cassava rhizome in the presence of catalysts. Journal of Analytical and Applied Pyrolysis, 81(1), 72–79. http://doi.org/10.1016/j.jaap.2007.09.002

Paul, R., Elmore, C. D., & others. (1984). Weeds and the C4 syndrome. Weeds Today, 15(1), 3–4.

Promdee, K., & Vitidsant, T. (2013a). Bio-oil synthesis by pyrolysis of cogongrass (Imperata Cylindrica). Chemistry and Technology of Fuels and Oils, 49(4), 287–292.

Promdee, K., & Vitidsant, T. (2013). Preparation of biofuel by pyrolysis of plant matter in a continuous reactor. Theoretical and Experimental Chemistry, 49(2), 126–129.

Promdee, K., & Vitidsant, T. (2013b). Synthesis of char, bio-oil and gases using a screw feeder pyrolysis reactor. Coke and Chemistry, 56(12), 466–469.

Qu, T., Guo, W., Shen, L., Xiao, J., & Zhao, K. (2011). Experimental study of biomasa pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Industrial & Engineering Chemistry Research, 50(18), 10424–10433.

Sage, R. F., Christin, P.-A., & Edwards, E. J. (2011). The C4 plant lineages of planet Earth. Journal of Experimental Botany, 62(9), 3155–3169. Retrieved from http://dx.doi.org/10.1093/jxb/err048

Sage, R. F., & Zhu, X.-G. (2011). Exploiting the engine of C4 photosynthesis. Journal of Experimental Botany, 62(9), 2989–3000. Retrieved from http://dx.doi.org/10.1093/jxb/err179

Sheng, C., & Azevedo, J. L. T. (2005). Estimating the higher heating value of biomasa fuels from basic analysis data. Biomasa and Bioenergy, 28(5), 499–507. http://doi.org/10.1016/j.biombioe.2004.11.008

Silaen, A., & Wang, T. (2012). Investigation of the Coal Gasification Process Under Various Operating Conditions Inside a Two-Stage Entrained Flow Gasifier. Journal of Thermal Science and Engineering Applications, 4(2), 21006–21011. Retrieved from http://dx.doi.org/10.1115/1.4005603

Strezov, V., Evans, T. J., & Hayman, C. (2008). Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology, 99(17), 8394–8399. http://doi.org/10.1016/j.biortech.2008.02.039

Taniguchi, M., Weber, A. P. M., & von Caemmerer, S. (2016). Future Research into C4 Biology. Plant and Cell Physiology, 57(5), 879–880. Retrieved from http://dx.doi.org/10.1093/pcp/pcw082

Villaseñor, I. M., & Lamadrid, M. R. A. (2006). Comparative anti-hyperglycemic potentials of medicinal plants. Journal of Ethnopharmacology, 104(1–2), 129–131. http://doi.org/10.1016/J.JEP.2005.08.067

Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D. H., Liang, D. T., … Liang. (2006). In-depth investigation of biomasa pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy & Fuels, 20(1), 388–393. http://doi.org/10.1021/EF0580117

Yu, Y., Chua, Y. W., & Wu, H. (2016). Characterization of Pyrolytic Sugars in Bio-Oil Produced from Biomasa Fast Pyrolysis. Energy & Fuels, 30(5), 4145–4149. http://doi.org/10.1021/acs.energyfuels.6b00464

Zanatta, E. R., Reinehr, T. O., Awadallak, J. A., Kleinübing, S. J., dos Santos, J. B. O., Bariccatti, R. A., … da Silva, E. A. (2016). Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. Journal of Thermal Analysis and Calorimetry, 125(1), 437–445. http://doi.org/10.1007/s10973-016-5378-x

Zhou, X., Li, W., Mabon, R., & Broadbelt, L. J. (2017). A Critical Review on Hemicellulose Pyrolysis. Energy Technology, 5(1), 52–79. http://doi.org/10.1002/ente.201600327
Published
2019-08-28
How to Cite
Fitriyah, F., Hidayat, S., Bakar, M., & Phusunti, N. (2019). PYROLYSIS OF ALANG – ALANG (IMPERATA CILINDRICA) AS BIOENERGY SOURCE IN BANTEN PROVINCE INDONESIA. Jurnal Kebijakan Pembangunan Daerah, 3(1), 60-78. https://doi.org/https://doi.org/10.37950/jkpd.v3i1.62
Section
Articles